
Defective degenerate mode and dynamics of perturbed sine-Gordon soliton plus phonon

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L373

(http://iopscience.iop.org/0305-4470/19/7/002)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 19:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/7
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L373-L380. Printed in Great Britain 

LETTER TO THE EDITOR 

Defective degenerate mode and dynamics of perturbed 
sineGordon soliton plus phonon 

P C Dash 
Department of Physics, College of Basic Science and Humanities, Orissa University of 
Agriculture and Technology, Bhubaneswar-751 003, India 

Received 17 July 1985 

Anstract. Two new ideas are introduced in the case of the sine-Gordon 27r kink. The first 
refers to non-interacting phonon plus soliton which is found to be the correct picture in 
first-order theory. This justifies the additive paradigm of soliton plus oscillation plus 
translation and hence the Newtonian dynamics. The non-Newtonian behaviour is due to 
an inappropriate consideration of the soliton-phonon wavepacket interaction. The sig- 
nificance of the defective degenerate mode to the SG 27r kink in the presence of perturbing 
force fields and/or damping is discussed and a surprising result (the absence of the mode) 
is reported. 

A complete set of functions used in linear stability analysis of non-linear Klein-Gordon 
kinks is very helpful in discussing the effect of small perturbations (Fogel et al 1976, 
1977) in addition to its usual role in quantum field theory (Goldstone and Jackiw 
1975) and low-temperature kink statistical mechanics (Krumhansl and Schrieffer 1975). 
Very recently the same complete set has attracted much attention due to its appearance 
in the controversial non-Newtonian dynamics (Reinisch and Femandez 1981) and has 
also explained a new defective degenerate mode (Magyari and Thomas 1984). In 
linear stability analysis as well as perturbation calculations a small space- and time- 
dependent function is expanded in terms of this complete set of spatial functions and 
the time-dependent expansion coefficients describe the time development of the prob- 
lem. In a recent letter I have given a good account of the Newtonian/non-Newtonian 
controversy (Dash 1983, 1985 and references therein). There, as well as in another 
paper (Dash 1984), I have stressed the importance of initial conditions on s~ 21r kink 
solitons; in particular I attempted to show that the non-Newtonian dynamics is due 
to the specific initial values chosen by Reinisch and Fernandez (1981) (RF). A general 
set of initial conditions was taken to display a different dynamics of the 2 7 ~  kink which 
is dependent upon a characteristic time to (near this time the soliton receives a 
Newtonian acceleration and at times far away from to the soliton moves with a constant 
velocity accompanied by a shape variation). When to goes to zero these initial values 
become identical to those of RF and the dynamics is in complete accord with their 
predictions. In an attempt to explain these results qualitatively I assumed that when 
a soliton is at rest with phonons to begin with, the interaction takes place in the 
presence of imperfections. This interaction I conjectured to be dependent upon initial 
conditions. Now many important questions remain unanswered: how will this feature 
of soliton plus phonon be brought into the domain of linear perturbation theory? 
Once mathematically introduced, how will they develop in time? Why does there exist 
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so much controversy regarding this Newtonian/non-Newtonian behaviour? Just by 
choosing the integration constant associated with scattering states in the form of a 
delta function I introduce a very novel expression which I define as phonon plus 
soliton and I intend to show that it is the only appropriate structure in first-order 
perturbation theory. This will at once answer all the questions raised and will also 
explain why the dynamics would always be Newtonian in the presence of small 
perturbations. 

The other topic I want to analyse is the role of the defective degenerate mode 
(DDM) in studying soliton perturbation. Magyari and Thomas (1984) (MT) propose 
this mathematical time-degenerate mode in the case of a pure undamped sine-Gordon 
( S G )  equation as well as in the presence of a viscous damping term. Previously they 
have discussed a similar universal inertia mode in the presence of a force field (which 
is less than a maximum value and is not perturbative). In the first two cases they 
discover defective degeneracy ( DD) around a moving and a static 217 kink respectively. 
In the last case it is around a solution of the full inhomogeneous forced SG equation 
which does not exist in closed form. Their approach is the linear stability analysis 
which exposes the existence of the DD. They have found applications of this mode in 
many physical systems such as one-dimensional magnets, the Josephson transmission 
line, the Trullinger-Bishop multi-component field model, nematic liquids and spin 
dynamics in 'He. My purpose here is to study the DD around a 217 kink solution which 
exists analytically in the free and damped case as well as with or without a perturbing 
force field. After identifying it my next task is to examine the role it plays in the case 
of constant and periodic force field. Thus my aim is completely different from MT 
who found DD in the case for homogenous equations always, whereas I search for its 
significance for inhomogeneous perturbed SG equations. The result that I am going to 
report is very surprising in the sense that it happens to be negative and so I perforce 
advance a revised interpretation. The DDM does not represent anything separate, but 
is only a part of the Goldstone mode (or the specific scattering mode). 

To be more specific about the meaning of soliton plus phonon, let us re-examine 
the origin and interpretation of this complete set of functions. I consider here a solution 

e = s,(z)+ ~ ( z ,  t )  

e,, - e,, +sin e = 0 

(1) 

(2) 

of the sine-Gordon equation 

where subscripts t and x represent partial derivatives, z is the coordinate in the soliton 
rest frame S,(z) =4tan-' exp(z) and u(z, t )  is a small fluctuation field. Linearising in 
terms of U 

U,, - U,, +(1-2 sech' z)u = 0. (3) 
Now U can be expanded as 

+co 

u(z, t)=ab(t)h(z)+{-m dkak(t)f,(z) 

where {fb,fk} represents a complete set of functions 

and 
Pb=O 

p i  = 1 + kZ 

& ( z )  = (l/a) sech z 

h ( z ) = ( 1 / 6 )  exp(ikz)(k+i tanh z)/pk. 

(4) 
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Putting back expression (4) in (3), multiplying by fb(z) or f;F(z) and then integrating 
over z we obtain, in first order, independent equations for coefficients ab( t )  and a k (  t ) .  
After substituting the solutions of these equations in (4), u(z, t )  can be expressed in 
either of the following forms: 

+X 

U(z, t )  = ( M t +  N)fb(Z)+ dk(A(k) exp(-ipkt) + B(k) exp(ipkt))fk(z) ( 5 )  

or 

U ( Z ,  t )  = ( M t  + N)fb(z) + dk( C( k) COS p k t +  D(k)  sin pkt)fk(Z) (6) 1:: 
where M, N, A(k), B ( k )  or C(k), D(k)  are integration constants. The discussion of 
different aspects of ( 5 )  is essential so far as the contents of this letter are concerned. 
Firstly, when A(k)=B(k)=O, u(z, t )  in this homogeneous case means a soliton 
translation only, i.e. all internal perturbational energy can be used up in giving the 
soliton a motion with constant velocity. Secondly, if M # N # 0 and C(k)  = 
(Ak/&pk), B( k) = 0, then U (  z, t )  = (Mt + N - A)&( z); the soliton receives a displace- 
ment in the negative z direction due to the choice of this phonon wavepacket, or 
considering another type of wavepacket given by C( k) = A ~ / ( & f i p :  sinh i r k )  (this 
choice will later be shown to be responsible for the so-called non-Newtonian behaviour 
of SG kinks) 

U( z, t )  = ( M t  + N)fb(  Z )  - ( rA/2fi) t2fb(  Z) - A COS t tanh IzI 

+ (~A/4)[lz\e-I'I+ tanh Izle-l'l(l+ I z ~ ) ]  
+(A/2) 1 4(-1)" cos(1 -4n2)"2t e-2"1'1(2n+tanh lz1)/(4n2- 1)'. . . . 

X 

n = l  

(7) 
This means the soliton receives an acceleration due to the particular choice of 

C(k) ,  even in the absence of any external force field. After all these discussions 
regarding the effect of k-dependent coefficients let us consider a choice B(k) = A(k) = 
X i  S( k - ki) or for simplicity A( k) = Xi S( k - ki), B( k) = 0, then equation (7) means 
uniform motion of a soliton (dependeng on M and N values) in a uniformly moving 
phonon field. This state I define as soliton plus phonons: at t = 0 ,  the scattering 
functions describe a static small oscillation phonon field and as time advances it 
becomes a travelling phonon field. 

Further examination of (7) shows that a term t f b ( x )  occurs along with constant 
M. So if M # 0 and is small, then for small t values it imparts a small velocity to 
static solitons. As (3) is a homogeneous equation each and every term of expression 
(7) represents an independent solution and this independent solution is regarded as 
a defective degenerate mode by Magyari and Thomas. From our discussions it follows 
that so long as u(z, t )  is small this does not represent a separate mode, but rather a 
manifestation of the time-dependent coefficient of the Goldstone zero-frequency trans- 
lation mode. 

Next I shall consider the effect of a constant external perturbing force field 

U~r-Uzz+(l-2sech2z)u= E. (8) 
Obtaining solutions to (8) in analytic form Fogel et a1 (1977) predicted a Newtonian 
particle-like behaviour of SG kinks which was challenged very recently by Reinisch 
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and Femandez (1981,1982). At present many authors advance arguments in favour 
of Newtonian dynamics thereby refuting the arguments of RF by different considerations 
(Dash 1985). But the mathematical analysis and numerical simulation of RF still gives 
the impression that the dynamics is in general non-Newtonian although for some 
limited specific cases it may be Newtonian. Another motivation for the examination 
of this case stems from the fact that the work of Kosevich and Kivishar (1984) stresses 
the Newtonian dynamics of SG kinks from the standpoint of inverse scattering theory 
except in the case of some odd perturbations which include the constant force field 
and proposes non-Newtonian behaviour for these odd perturbations. Further, my 
purpose here is also to illustrate the importance, if any, of the defective degenerate 
mode in the presence of small perturbations with an example where the integrals 
involved can be exactly evaluated. Proceeding in a similar manner as indicated 
previously, (8) yields 

U(Z, t )  = [ h f t  + ( 7rE/2JZ)f2+ N]f,(z)+dk( C (  k) COS P k f  + D( k) Sin Pkt+ F(k)) fk(Z)  
(9) 

with 

F( k) = (27rkS( k )  - r /s inh i r k )  E / ( f i p ; ) .  

The RF initial conditions make M = N = 0 and C (  k) = - F ( k ) .  As I have pointed out 
earlier with this choice, even without the presence of a force the kink receives a negative 
acceleration. So the cancellation of the acceleration term is not an effect of an external 
force field but it is the behaviour of the particular wavepacket chosen. In some of my 
earlier papers I have worked out the effect of choosing different values for C ( k )  and 
D ( k )  and obtained a different dynamics of the 27r kink (Dash 1985). Now to identify 
where the considerations of RF are misleading, let us discuss the dynamics of phonon 
plus solition, i.e. C (  k) = X i  S(  k - ki) and D( k)  = Xi  S (  k - ki) and M = N = 0; then 

U( z, t )  = ( TE/2JZ) f2&( 2) + J (  z) 

+ small amplitude phonon waves travelling in both directions 
where 

m 

1 -$7r e-Iz1+2 (- 1)" exp(-2nlz1)/(4nz- 1)2 
n = l  

- ( ~ / 4 ) l z l  ex~(-lzl))  

+ 4  (-11% exp(-2nlz1)/(4n2- 1)~-(7r/4)lzl exp(-lzl) 

and represents soliton shape variation. So due to the perturbing field E, the soliton 
receives an acceleration proportional to the force and a shape variation J (z ) ;  all 
particles in the medium undergo small oscillations constituting travelling phonon waves 
which are usual linear phonons only suffering a phase change near the soliton. The 
defective degenerate mode has no special role to play. It appears along with integration 
constant M and is only a part of the time-dependent coefficient of the Goldstone 
translation mode. M f f b ( x )  is not an independent solution in this inhomogeneous case. 

Next let us consider the sine-Gordon model with damping and a constant force 
(the damping and force are considered to be perturbations to the pure SG 27r kink): 

W 

n = l  

e,, - e,, + he, + sin e = E (10) 
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h being the damping coefficient. The equation for the perturbation function u(z, t )  in 
the soliton rest frame can be solved to yield 

u(z, t )  = [ M  e x p ( - 2 g t ) + N + F r / 2 g ] f b ( z ) + J ( z )  

+[::dk exp(-gt)(C(k) cos r t+D(k)  sin rt) 

where 2g = h( 1 - U’)’/’, F = 4 d v g  + (../a) E, and 2r = (4p; - h2)1’2. Since the damp- 
ing coefficient h<< 1 and p;(=l+ k 2 )  is always greater than 1, no other case except 
pk > h occurs and hence the DDM does not arise for k # 0. Inspection of the coefficient 
offb(z) shows that though & ( z )  appears with M and F it has no specific significance 
except as a time-dependent coefficient of fb( z). ( MT does not propose DD for this case 
though from the calculations I find a t f b ( t )  term.) Again the choice of C ( k )  and D ( k )  
will determine the dynamics and the soliton plus phonon will obey Newtonian dynamics 
and shape variation governed by J ( z ) .  

Finally, I shall consider the case where DD is expected in k # 0 mode: 

e,, - Oxx + he, + sin e = E COS pt .  (12) 

Here h may not be small but the right-hand side represents a periodic perturbing force 
field. With the RHS equal to zero, (12) has a solution-the static kink solution of the 
pure SG equation. However in this case MT predicted the existence of a DD mode for 
k values corresponding to h2  = 4p:. Considering u(x, t )  as a perturbation function in 
the soliton rest frame (here the laboratory frame) the coefficients a b ( t )  and & ( t )  
satisfying the following equations: 

(13) 

(14) 

Ubrr + habt = ( T / d ) E  COS p f  

a k l r  fpiak + hakt = F( k) COS p f  

with solutions 

ab( t )  = M + N exp( -h t )  + ( h E / p )  sin p t / ( p 2  + h 2 )  - E cos p t / ( p 2 +  h 2 )  

akl’(f) = ( A ( k )  exp q t + B ( k )  exp(-qt)) exp(-ht/2) 

for h2 > 4p; with 2q = ( h2 - 4 ~ : ) ’ ~ ~  

aP’(t) = ( p +  Q t )  exp(-ht/2) for h2 = 4p: 

and for h2 < 4p: with (4p; - hZ)’ l2  = 2r 

a P ’ ( t ) = ( C ( k )  cos r t+D(k)  sin rt)exp(-ht/2) 

so that 

u(X, t )  = a b ( t ) f b ( x )  [ H ( k ) f , ( x )  dk 
+a, 

-m 

+i(P+ @)(sin mx+tan hx cos mx)4 e x p ( - h t / 2 ) / ( G h )  

+ lim 
-m--E 

ai3’fk(x) d k + J + m  a i3 ) fk (x )  d k +  J m - ‘  a‘k“fk(x) dk (15) 
m+e -m+E 

with 
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and 
m = f ( h 2  - 4)1'2. 

For the steady state 

u(x, t )=[Nexp(-ht)+(hE/p)  s inpr/(p2+h2)-E cospt/(p2+hz)+M]fb(x) 
+W +I_, ~ ( k ) . ~ x >  dx. 

The defective degenerate mode as discussed by MT is t exp(-ht/2)fk(x) at k = 
kf( h2 - 4)'12 or 4p: = h2.  Its contribution is the presence of a perturbing force field is 
the factor associated with the integration constant Q in (15) and zero in the steady 
state equation (16). 

To summarise, I find that equation (4) contains all information regarding the 
perturbation. For the first time I bring out two distinct characteristics (with or without 
small external force fields and/or damping): for a particular delta function choice of 
A( k )  and B( k ) ,  the effect of perturbation reduces to a picture of a soliton in a sea of 
non-interacting phonons and as time goes on this non-interacting nature is preserved 
but the phonons now represent travelling waves instead of being static, and the soliton 
follows Newtonian dynamics accompanied by small deformations. Any other choice 
of these integration constants (which may be introduced by a different choice of initial 
conditions) makes these phonon waves interact and the picture that evolves is a soliton 
interacting with a phonon wavepacket. Without any external field or damping one 
trivial choice of A ( k )  and B( k) gives us u(z ,  t )  = ( M t S  N - A)fb(z ) ;  a non-trivial 
choice yields equation (7). In the presence of a force field (that is, from equation (9)) 
one arrives at the RF nowNewtonian behaviour by the choice of initial conditions as 
in our non-trivial example (equation (7)). In all these cases a single feature becomes 
evident-the choice of integration constants introduces a pole at k = i, so that, after 
the k integration a term equivalent to negative translation mode appears (the integration 
is nothing more than the representation of phonon interaction). The interaction due 
to the particular choice of k (= i )  gives rise to a soliton translation. Here a question 
may arise as to how this translation mode, which is orthogonal to the scattering 
functions, appears as a result of these functions. It is not the scattering functions 
which generate the bound state; rather, the integration does, which means that it is 
the interaction of these scattering functions which is responsible for this mode (it is 
quite evident in the completeness relation itself). However one inconsistency is involved 
here: when we have neglected higher-order terms in field variables we have eliminated 
phonon-self and phonon-soliton interactions (Hasenfratz and Klein 1977, Wada and 
Schrieffer 1978). Now the choice of integration constants brings in a particular type 
of interaction involving a pole at k = i. In conclusion, I propose that in first-order 
linear theory the appropriate picture should be that of soliton plus phonon in the sense 
introduced in this paper, where the soliton always receives an acceleration proportional 
to the force and undergoes a small variation of shape. 

As far as the defective degenerate mode is concerned my purpose here is completely 
different from that of Magyari and Thomas. For the three cases (8), (10) and (12) I 
consider E, h and E cos p t  as perturbations around a moving SG 2 a  kink (for equation 
(8)) or around a static 27r kink (in the cases described by (10) and (12)). For equation 
(10) Magyari (1984) discusses an inertia mode around &(x, 1 )  where &(x, r )  is a solitary 
wave solution of the full equation (10) and E is less than a maximum value E, (E is 
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not a perturbation and &(x, t )  does not exist in closed form). However with E =0, 
equations (9) and (10) possess DDM &(x) and t exp(-ht/2)fk(x) (at 4pi=  h 2 )  respec- 
tively. Hence when E # 0 I analyse the role of DD in describing the effect of perturbation 
on the 2a kink; since it is not a degeneracy in space but in time it has nothing to do 
with the complete set of functions; rather, it appears in the time-dependent expansion 
coefficients. After a thorough investigation of the perturbed equation the results found 
are surprising: it is associated with integration constants M and Q, it does not exist 
in the steady state equation (16), and furthermore it is found in situations where it 
should not occur (equation (11)). Usually when an initial static kink is considered, 
M = 0 and the t f b ( x )  term disappears. On the whole I come to the conclusion that 
DD does not represent a separate mode and the interpretation of MT needs modification. 
Thus my investigation shows a negative result: defective degenerate mode has no 
specific role to play in the presence of constant/time-dependent perturbing force fields 
with or without damping. It is only a part of the Goldstone mode (or specific scattering 
state function). Hence in accordance with what was found for the perturbed sine- 
Gordon equation I advance a new interpretation of the DDM of Magyari and Thomas 
by saying that in their analysis nothing is lost if it is considered as a part of the 
Goldstone mode (or specific scattering state) occurring through the time-dependent 
coefficients. 

Now I wish to discuss one limitation of the present perturbation method: the 
appearance of secular terms in expressions (7), (9), (5) and (11). In particular, the 
presence of t2  terms in (7) and (9) limits the validity of the theory to the t = E ’’* value. 
In other cases (5) and (11) t f b ( z )  is the only secular term. This latter factor is usually 
avoided with the choice of a motionless initial kink in the Lorentz rest frame (the 
soliton rest frame). But the former t2-dependent term can be removed by special 
methods where adiabatic kink motion is to be assumed (McLaughlin and Scott 1978). 
The conclusions that have been arrived at for t - E ”* would hold good in all probability 
when this secularity is removed. In expressions (15) and (16) which contain a periodic 
perturbing force as well as damping, these secular terms are absent; so the results 
presented here are valid for all time values in many cases where as in certain specific 
examples (for constant force field) the appropriateness of our discussion is limited for 
small time values due to asymptotically increasing time-dependent terms. Once this 
secularity is removed in those few ccases it is hoped that the same conclusions will 
follow. 

Finally, a comparison of the present method with other existing perturbation 
theories deserves consideration. T h e  most elaborate of all is the one which depends 
heavily on the inverse scattering method, but the results obtained by Kosevich and 
Kivishar (1983) differs significantly from Karpman and Solov’ev (1981). The other, 
more physical, approach is that of McLaughlin and Scott (1978). With the help of 
both these methods not only the single soliton case but the general multi-soliton 
perturbation can be handled in principle (even though mathematical calculations are 
very complicated). However since in the former case there is a discrepancy in the two 
different approaches and a questionable adiabatic assumption in the latter, then in 
order to check the results another more simple, more physical and easily accessible 
approach is needed. Such an approach is possible with the help of a complete set of 
functions associated with linear stability analysis. But as is shown here one should be 
extra Cautious: the choice of expansion coefficients a b  and (zk are highly significant. 
If ak represents a k-dependent expression without involving a pole at k = *i, the 
motion of the soliton is accompanied by a phonon wavepacket; if it involves a pole 
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then this phonon cloud has some dynamical effect on the soliton motion. On the other 
hand the choice of ak in the form of a delta function represents a soliton accompanied 
by a non-interacting phonon field which I have described here as ‘soliton plus phonon’. 
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